Biopolym. Cell. 2018; 34(1):3-13.
Геноміка, транскриптоміка та протеоміка
Експресія генів PR та білків теплового шоку в картоплі in vitro при інокуляції кільцевою гниллю й тепловому впливі
1Нурмінский В. Н., 1Столбіков А. С., 1Поморцев А. В., 1Перфільєва* А. І.
  1. Сибірський інститут фізіології і біохімії рослин СО РАН
    вул. Лермонтова 132, Іркутськ, Російська Федерація, 664033

Abstract

Мета. Дослідити зміну експресії білків теплового шоку БТШ101, БТШ 60 і БТШ 17.8 в тканинах картоплі сорту Лук’яновський in vitro при тепловому впливі та зараженні збудником кільцевої гнилі Clavibacter michiganensis ssp. sepedonicus (Cms). Методи. Зміну експресії вивчено на двох рівнях: кількості транскриптів та вмісту протеїну. Результати. Показано, що при тепловому впливі 39 оС протягом 2 годин in vitro спостерігається максимальне накопичення HSP101. В контрольних варіантах у рослин було не було відмічено ані синтезу білків HSP101, HSP60 й HSP17.8, ані утворення транскриптів генів HSP101, HSP60 та HSP17.8. Зараження без теплового впливу індукувало експресію білку HSP60 в рослинах сорту Лук’яновський. Зараження пригнічувало активацію експресії БТШ при тепловому стресі. При зараженні рослин картоплі Cms підвищувалась кількість транскриптів генів PR-2 та PR-4. Висновки.
Keywords: білки теплового шоку, PR, картопля, Clavibacter michoganensis ssp. sepedonicus.

References

[1] Prasch CM, Sonnewald U. Signaling events in plants: stress factors in combination change the picture. Environ Exp Bot. 2015;114:4–14.
[2] Vierling E. The roles of heat shock proteins in plants. Annu Rev Plant Physiol Plant Mol Biol. 1991;42:579–620.
[3] Qu AL, Ding YF, Jiang Q, Zhu C. Molecular mechanisms of the plant heat stress response. Biochem Biophys Res Commun. 2013;432(2):203-7.
[4] Basha E, Lee GJ, Breci LA, Hausrath AC, Buan NR, Giese KC, Vierling E. The identity of proteins associated with a small heat shock protein during heat stress in vivo indicates that these chaperones protect a wide range of cellular functions. J Biol Chem. 2004;279(9):7566-75.
[5] Wahid A, Gelani S, Ashraf M, Foolad MR. Heat tolerance in plants. An overview. Environ Exp Bot. 2007;61(3):199–223.
[6] Gupta SC, Sharma A, Mishra M, Mishra RK, Chowdhuri DK. Heat shock proteins in toxicology: how close and how far? Life Sci. 2010;86(11-12):377-84.
[7] Singh A, Grover A. Plant Hsp100/ClpB-like proteins: poorly-analyzed cousins of yeast ClpB machine. Plant Mol Biol. 2010;74(4-5):395-404.
[8] Al-Whaibi MH. Plant heat-shock proteins: a mini review. J King Saud Univ Sci. 2011;23(2):139–50.
[9] Krause M, Durner J. Harpin inactivates mitochondria in Arabidopsis suspension cells. Mol Plant Microbe Interact. 2004;17(2):131-9.
[10] Maimbo M, Ohnishi K, Hikichi Y, Yoshioka H, Kiba A. Induction of a small heat shock protein and its functional roles in Nicotiana plants in the defense response against Ralstonia solanacearum. Plant Physiol. 2007;145(4):1588-99.
[11] Kubienová L, Sedlářová M, Vítečková-Wünschová A, Piterková J, Luhová L, Mieslerová B, Lebeda A, Navrátil M, Petřivalský M. Effect of extreme temperatures on powdery mildew development and Hsp70 induction in tomato and wild Solanum spp. Plant Protect Sci. 2013;49(Sp Iss):S41–55.
[12] Wang Y, Bao Z, Zhu Y, Hua J. Analysis of temperature modulation of plant defense against biotrophic microbes. Mol Plant Microbe Interact. 2009;22(5):498-506.
[13] Király L, Hafez YM, Fodor J, Király Z. Suppression of tobacco mosaic virus-induced hypersensitive-type necrotization in tobacco at high temperature is associated with downregulation of NADPH oxidase and superoxide and stimulation of dehydroascorbate reductase. J Gen Virol. 2008;89(Pt 3):799-808.
[14] Schweizer P, Vallélian-Bindschedler L, Mösinger E. Heat-induced resistance in barley to the powdery mildew fungus Erysiphe graminis f.sp. hordei. Physiol Mol. 1995;47(1):51–66.
[15] Vallelian-Bindschedler L, Schweizer P, Mosinger E, Metraux JP. Heat-induced resistance in barley to powdery mildew (Blumeria graminisf.sp.hordei) is associated with a burst of active oxygen species. Physiol Mol Plant Pathol. 1998;52(3):185–99.
[16] Gijzen M, MacGregor T, Bhattacharyya M, Buzzell R. Temperature induced susceptibility to Phytophthora sojae in soybean isolines carrying different Rps genes. Physiol Mol Plant Pathol. 1996;48(3):209–15.
[17] CChen SR, Dunigan DD, Dickman MB. Bcl-2 family members inhibit oxidative stress-induced programmed cell death in Saccharomyces cerevisiae. Free Radic Biol Med. 2003;34(10):1315-25.
[18] Anisimov BV, Belov GL, Varitsev Yu.A., Elanskii SN, Zhuromsky GK, Zavriev SK, Zeyruk VN, Ivanyuk VG, Kuznetsova MA, Plyahnevich MP, Pshechenkov KA, Simakov EA, Sklyarova NP, Stashevski Z, Uskov AI, Yashina IM. Protection of potato plants from diseases, pests and weeds. Moscow: “Kartofelevod”, 2009; 272 p.
[19] Chang RJ, Ries SM, Pataky JK. Effects of temperature, plant age, inoculum concentration, and cultivar on the incubation period and severity of bacterial canker of tomato. Plant Dis. 1992;76(11):1150–5.
[20] Laurila J, Metzler MC, Ishimaru CA, Rokka VM. Infection of plant material derived from Solanum acaule with Clavibacter michiganensis ssp. sepedonicus: temperature as a determining factor in immunity of S. acaule to bacterial ring rot. Plant Pathol. 2003;52(4):496–504.
[21] Romanenko AS, Riffel AA, Graskova IA, Rachenko MA. The role of extracellular pH-homeostasis in potato resistance to ring-rot pathogen. J Phytopathol. 1999;147(11-12):679–86.
[22] Perfileva AI, Rymareva EV. The impact of sodium monoiodoacetate on the colonization of potato plants in vitro with the causative agent of ring rot. Plant Protect Quarantine. 2013;3:49–50.
[23] Khavkin EE. Potato late blight as a model of co-evolution in the host-pathogen system. Rus J Plant Physiol. 2015;62(3):439–51.
[24] Pobezhimova TP, Kolesnichenko AV, Grabelnykh OI. Methods of plant mitochondria investigations. Polarography and electrophoresis. Moscow: Promekobezopasnost, 2004; 99 p.
[25] Ahn Y, Claussen K, Zimmerman L. Genotypic differences in the heat-shock response and thermotolerance in four potato cultivar. Plant Science. 2004;166(4):901–11.
[26] Levy D, Veilleux RE. Adaptation of potato to high temperatures and salinity – a review. Amer J Potato Res. 2007;84(6):487–506.
[27] Tang R, Zhu W, Song X, Lin X, Cai J, Wang M, Yang Q. Genome-Wide Identification and Function Analyses of Heat Shock Transcription Factors in Potato. Front Plant Sci. 2016;7:490.
[28] Hong SW, Lee U, Vierling E. Arabidopsis hot mutants define multiple functions required for acclimation to high temperatures. Plant Physiol. 2003;132(2):757-67.
[29] Howarth CJ. Molecular responses of plants to an increased incidence of heat shock. Plant Cell Environ. 1991;14(8):831–41.
[30] Rikhvanov EG, Voynikov VK. Hsp104p functions in induced thermotolerance and prion inheritance in Saccharomyces cerevisiae. Biol Bull Rev. 2005;125:115–28.
[31] Lomovatskaya LA, Romanenko AS, Filinova NV, Salyaev RK. Influence of exopolysaccharides of the causative agent of ring rot on the kinetic parameters of adenylate cyclases of potato plants. Doklady Biol Sci. 2011; 441(4):565–8.
[32] Savidor A, Teper D, Gartemann KH, Eichenlaub R, Chalupowicz L, Manulis-Sasson S, Barash I, Tews H, Mayer K, Giannone RJ, Hettich RL, Sessa G. The Clavibacter michiganensis subsp. michiganensis-tomato interactome reveals the perception of pathogen by the host and suggests mechanisms of infection. J Proteome Res. 2012;11(2):736-50.
[33] Nikolaychik EA. Systemic induction of PR genes of Solanum Lycopersicum plants in contact with bacteria Pectobacterium carotovorum: the role of the dspE gene. Proceed BSU. 2009;4(2):215–25.
[34] Wang N, Xiao B, Xiong L. Identification of a cluster of PR4-like genes involved in stress responses in rice. J Plant Physiol. 2011;168(18):2212-24.
[35] Gu YQ, Wildermuth MC, Chakravarthy S, Loh YT, Yang C, He X, Han Y, Martin GB. Tomato transcription factors pti4, pti5, and pti6 activate defense responses when expressed in Arabidopsis. Plant Cell. 2002;14(4):817-31.